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Abstract

In this article, a joined cylinder with a functionally graded material (FGM) is considered. An analytical solution for

the calculation of stresses in FGM is presented for the elastic and creep behavior of the materials. This analytical

solution can be used to study the time and temperature dependence of the stresses in a structure with FGM. Ó 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many applications, ceramic±metal joints are used under high-temperature conditions. Here, the metal
is used as a mechanical support structure and the ceramic as a coating for resisting the high temperature,
for example, the thermal barrier coating system (TBCs). In many cases, the metals can creep. Therefore, the
creep behavior should be considered in the stress analysis if the joints are used at high temperatures.

Due to the di�erence in the thermal expansion coe�cients and in the elastic constants, high stresses
develop after a homogeneous temperature change in such a ceramic±metal joint. For linear elastic material
behavior, there even exist stress singularities at the intersection of the interface and the free edge. To reduce
this stress level and to avoid the stress singularity, a functionally graded material (FGM) is usually in-
troduced.

Stresses in FGM under thermal loading have been analyzed extensively with regard to the elastic ma-
terial behavior in the past 10 years (Arai et al., 1990; Erdogan and Wu, 1993; Fukui and Yamanaka, 1993;
Hirano and Teraki, 1993; Obata and Noda, 1994; Tanigawa, 1995; Yang, 1998a). However, there is a lack
of the stress analysis considering material creep behavior. So far, there is no analytical solution for the
calculation of the stresses depending on time, temperature and the transition functions of the material in
FGM.
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To obtain the basic results in most cases, in general, plates or cylinders are applied in the stress analysis.
In a plate, the stress analysis is simpler than in a cylinder due to the geometry curvature. In this article, a
joined cylinder with a graded material is considered. An analytical solution to calculate the stresses in FGM
is presented considering the elastic and creep behavior of the materials. For the elastic material behavior,
the solution is exact. For the creep material behavior, the solution is asymptotic. For the stress analysis
after a longer time creeping, the iterative procedure is necessary and higher order asymptotic solutions have
to be used. Using this analytical solution, it is easy to study the dependence of the stresses on time, tem-
perature and the transition functions of the material in FGM. This solution can also be used easily for the
stress distribution optimization in a joint with FGM, taking the creep behavior into account. For the stress
distribution optimization, some mathematic methods have to be used, e.g. the gradient method, the swarm
search method, etc. Examples for the stress distribution optimization, using these methods, considering
material elastic behavior are given in Schaller et al. (1999). In the asymptotic solution, the relationship
between the stresses or the displacements and the creep material data are known. Therefore, another ap-
plication of this analytical solution is to determine the creep material data in FGM iteratively, if the dis-
placement or the stresses in FGM can be measured experimentally.

Nomenclature

T temperature change
t time
E Young's modulus
m Poisson's ratio
a thermal expansion coe�cient
r coordinate in the radial direction
�r given point in the creep layer
Ri, Ra inner and outer radii of the cylinder
rij stress tensor
�ij strain tensor
_rij rate of stress tensor
_�ij rate of strain tensor
Sij deviator stress tensor
reff e�ective stress
u displacement in the r direction
_u rate of the displacement in the r direction
D;N creep material constants
n;A parameters in the transition function of E
m;B parameters in the transition function of aT
d constant strain �z
_d constant strain rate _�z

x1; x2 exponent in the solution of u and _u
C1;C2 unknown constants in the solution of u for the case of �z � 0
C1d ;C2d unknown constants in the solution of u for the case of �z � d
D1;D2 unknown constants in the solution of _u for the case of _�z � 0
D1d ;D2d unknown constants in the solution of _u for the case of _�z � _d
F0 resulting force of rz at the ends of a cylinder for the case of �z � 0
Fd resulting force of rz at the ends of a cylinder for the case of �z � d
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2. Solutions for linear elastic behavior in FGM

For the stress analysis in a joint with FGM, having material creep behavior, the solutions of the stresses
at a time equal to zero (i.e. the initial stress state) are needed, which correspond to the solution of materials
with linear elastic behavior. In this section, equations to calculate such linear stresses in FGM analytically
will be given brie¯y for three cases: (a) the strain in the z axis direction is zero (the coordinate system see
Fig. 1), i.e. �z � 0; (b) the strain in the z axis direction is a known constant, denoted as d; (c) the strain in the
z axis direction is free, which corresponds to the situation in the center of a very long cylinder with no
constraint in the z direction.

2.1. The case of �z being zero

For the case of a cylinder being subjected to a radial temperature change (i.e. T � T (r)), the stress
distribution is axial symmetric. For the case of �z � 0, the elastic stress±strain relations in each material,
homogeneous or FGM, read

�r � 1

E0
rr

�
ÿ m

1ÿ m
rh

�
� �1� m�aT ; �1�

�h � 1

E0
rh

�
ÿ m

1ÿ m
rr

�
� �1� m�aT �2�

with E0 � E=�1ÿ m2�, or

rr � E�1ÿ m�
�1ÿ 2m��1� m� �r

�
� m

1ÿ m
�h ÿ 1� m

1ÿ m
aT
�
; �3�

rh � E�1ÿ m�
�1ÿ 2m��1� m� �h

�
� m

1ÿ m
�r ÿ 1� m

1ÿ m
aT
�
; �4�

Fig. 1. The investigated geometry and the coordinate system.
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rz � m�rr � rh� ÿ EaT ; �5�

where E is the Young's modulus, m, Poisson's ratio, a, the thermal expansion coe�cient and T is the
temperature distribution in the cylinder T � T �r�, here the temperature at a stress-free state is de®ned as
zero. The strains are related to the displacement as

�r � du
dr
; �6�

�h � u
r
; �7�

where u is the displacement in the r-direction. The equilibrium equation for this problem is

drr

dr
� rr ÿ rh

r
� 0 �8�

in each material. It should be noted that in FGM, the material data E, m and a are a function of the co-
ordinates. In this article, it is assumed that E � E�r�, a � a�r� and m is a constant, because the e�ect of m on
the stresses is small. By inserting Eqs. (6) and (7) into Eqs. (3) and (4) and then into Eq. (8), the essential
di�erential equation for the displacement u can be obtained as

d2u
dr2
� du

dr
1

r

�
� d�ln�E��

dr

�
� u

r
m

1ÿ m
d�ln�E��

dr

�
ÿ 1

r

�
� 1� m

1ÿ m
d�aT �

dr

�
� aT

d�ln �E��
dr

�
: �9�

When the solution of u is known from Eq. (9), the stresses and strains can be determined from Eqs. (3), (4),
(6) and (7). Therefore, the important point is to ®nd the analytical solution of Eq. (9). From Eq. (9), it can
be seen that the solution of the problem is strongly dependent on the transition functions of E and a in the
FGM and on the loading T � T �r�. Because the quantities a and T always appear together as a factor aT in
the considered problem, in the following, aT will be dealt as one function. As an example, a power law
transition function in the FGM and a power law function for the loading T �r�, i.e.

E � Ar n; aT � Br m; �10�
will be discussed in this article. The procedure presented below is also valid for other forms of transition
functions for E and aT . Through Eq. (10), the stress dependence on the coordinate and the temperature can
be considered, because in Eq. (10), T may be a function of the coordinates.

The general solution of the displacement u for the given transition functions is

u�r� � C1r x1 � C2r x2 � m00B�m� n�
�m� 1��m� n� 1� � �nm0 ÿ 1� r

�m�1� �11�

with

x1;2 � ÿn� ������������������������������
n2 � 4�1ÿ nm0�p

2
;

m0 � m
1ÿ m0

; m00 � 1� m
1ÿ m

: �12�

The corresponding stresses are

rr�r� � �1ÿ m�Arn

�1ÿ 2m��1� m� C1r�x1ÿ1��m0
�

� x1� � C2r�x2ÿ1��m0 � x2� � Bm�m0 ÿ 1�m00rm

2m� m2 � n� mn� nm0

�
; �13�
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rh�r� � �1ÿ m�Arn

�1ÿ 2m��1� m� C1r�x1ÿ1��1
�

� m0x1� � C2r�x2ÿ1��1� m0x2� � Bm�1� n� m��m0 ÿ 1�m00rm

2m� m2 � n� mn� nm0

�
;

�14�

rz�r� � mA
�1ÿ 2m��1� m� C1rn�x1ÿ1�1� � x1� � C2rn�x2ÿ1�1� x2�

	
ÿ Am

1� m
Bmm00�2� m� n�

2m� m2 � mn� n� m0n
rm�n ÿ ABrm�n: �15�

To determine the unknown constants C1 and C2 in each material, boundary conditions have to be used,
which are the continuity of the stress rr and displacement u at each interface and rr � 0 at the inner and
outer surfaces.

For some special cases, the solutions can be simpli®ed as follows:
1. The case of n � 0, but m 6� 0, means that the Young's modulus is a constant, but aT is a function of r,

e.g. a is a constant and T is a function of r. The solution can be simpli®ed as

x1 � 1; x2 � ÿ1; �16�

u�r� � C1r � C2

r
� m00B

m� 2
r�m�1�: �17�

2. The case of m � 0, but n 6� 0, means that aT is a constant, but the Young's modulus is a function of r.
The solution can be simpli®ed as

u�r� � C1rx1 � Cx2

2 �
m00B

1� m0
r; �18�

where x1 and x2 depend on the value of n.
3. The case of n� 0 and m� 0, means that the Young's modulus is a constant and aT also is a constant,

which corresponds to the case of a homogeneous material subjected to a homogeneous temperature
change. The solution can be simpli®ed as:

x1 � 1; x2 � ÿ1; �19�

u�r� � C1r � C2

r
� B

2

1� m
1ÿ m

r; �20�

which is the same as that given in Yang (1998b) for multi-layer joined cylinder.

2.2. The case of �z being a known constant

For the case of �z being a known constant, denoted as d, the stress and strain relation is

rr � E�1ÿ m�
�1ÿ 2m��1� m� �r

�
� m

1ÿ m
�h � m

1ÿ m
d
�
; �21�

rh � E�1ÿ m�
�1ÿ 2m��1� m� �h

�
� m

1ÿ m
�r � m

1ÿ m
d
�
; �22�

rz � m�rr � rh� � Ed: �23�
The relations between the displacement and strains, and the equilibrium equation for stresses are the same
as those for the case of �z � 0 (see Eqs. (6)±(8)).

The di�erential equation for displacement u is
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d2u
dr2
� du

dr
1

r

�
� d�ln �E��

dr

�
� u

r
m

1ÿ m
d�ln �E��

dr

�
ÿ 1

r

�
� ÿ m

1ÿ m
d ln�E�� �

dr
d: �24�

For the transition functions given in Eq. (10), the solution of Eq. (24) is

u�r� � C1drx1 � C2drx2 ÿ rmd: �25�
The corresponding stresses are

rr�r� � �1ÿ m�Arn

�1ÿ 2m��1� m� C1dr�x1ÿ1��m0� � x1� � C2dr�x2ÿ1��m0 � x2�
	
; �26�

rh�r� � �1ÿ m�Arn

�1ÿ 2m��1� m� C1dr�x1ÿ1��1� � m0x1� � C2dr�x2ÿ1��1� m0x2�
	
; �27�

rz�r� � mArn

�1ÿ 2m��1� m� C1dr�x1ÿ1��1� � x1� � C2dr�x2ÿ1��1� x2�
	� Arnd: �28�

For the special case of n� 0, i.e. in a homogeneous material, the solutions are x1 � 1, x2 � ÿ1 and

u � C1dr � C2d

r
; �29�

rr � E
�1� m��1ÿ 2m� C1d

�
ÿ �1ÿ 2m�C2d

r2
� md

�
; �30�

rh � E
�1� m��1ÿ 2m� C1d

�
� �1ÿ 2m�C2d

r2
� md

�
; �31�

rz � E
�1� m��1ÿ 2m� 2C1dmf � �1ÿ m�dg; �32�

which are the same as that given in Yang (1998b) for multi-layer joined cylinder. To determine the con-
stants C1d and C2d in each material, boundary conditions have to be used.

2.3. The case of �z being free

In this section, the stress analysis in a cylinder with FGM under thermal loading and rz � 0 at the ends
will be given. Finding an exact analytical solution satisfying rz � 0 at each point of the ends is very di�cult.
Although rz � 0 at the ends of the cylinder cannot be satis®ed at each point, the solution of the resulting
force at the ends equaling zero

2p
Z Ra

Ri

rzr dr � 0 �33�

is useful, where Ri is the inner radius and Ra is the outer radius of the cylinder (in Fig. 1, Ri �R0 and
Ra � R2). Following the Saint±Venan principle, this solution can be used to calculate the stresses in the
range far away from the ends of a cylinder.

The solution of Section 2.1 is for thermal loading, but for the case of �z � 0. Under the assumption of
�z � 0, the resulting force of rz at the ends is
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F0 �
X2

i�1

F �i�0 ; �34�

where F �i�0 is the resulting force of rz in each material. The quantity F �i�0 can be calculated from

F �i�0 � 2p
Z R�i�a

R�i�i

mA
�1ÿ 2m��1� m� C1rn�x1ÿ1�1��

� x1� � C2rn�x2ÿ1�1� x2�
	

ÿ Am
1� m

Bmm00�2� m� n�
2m� m2 � mn� n� m0n

rm�n ÿ ABrm�n

�
r dr; �35�

where R�i�i and R�i�a are the inner and outer radii of the ith layer, and the quantities A, B, C1;C2, x1; x2, m, n
and m are applied for the ith material.

To equilibrate this force F0 at the ends of the cylinder, a mechanical force denoted as Fd should be
superposed, so that the resulting force of rz is zero at the ends of the cylinder. Under this force Fd , the strain
�z in the range far away from the ends is a constant d. Therefore, the stresses can be calculated from the
equations given in Section 2.2. The value of Fd can be obtained from

Fd �
X2

i�1

F �i�d �36�

with

F �i�d � 2p
Z R�i�a

R�i�i

mA
�1ÿ 2m��1� m� C1dr�n�x1ÿ1��1��

� x1� � C2dr�n�x2ÿ1��1� x2�
	� Arnd

�
r dr: �37�

The coe�cients C1d and C2d in each material are proportional to d. Therefore, F �i�d can be rewritten as

F �i�d � 2pd

Z R�i�a

R�i�i

mA
�1ÿ 2m��1� m�

~C1dr�n�x1ÿ1��1
n�

� x1� � ~C2dr�n�x2ÿ1��1� x2�
o
� Arn

�
r dr; �38�

with

~C1d � C1d

d
; ~C2d � C2d

d
;

where ~C1d and ~C2d are independent of d. For the problem studied in this section, the value of d can be
determined from the condition of

F0 � Fd � 0: �39�
Finally, under thermal loading, the stress distribution in a cylinder with FGM is

rij � r0
ij � rd

ij; �40�
where r0

ij will be calculated from the equations in Section 2.1 and rd
ij will be determined from the equations

in Section 2.2 using the value of d from Eq. (39) with Eqs. (34)±(36) and (38). Here, the equations are for a
two-layer joint with FGM. Solutions for a joint with more layers with FGM can be found in Yang (1998b).

3. Solutions for creep behavior in FGM

Following Norton's law (Finnie and Heller, 1959), for materials with creep behavior, the relations be-
tween the rates of stress ( _rij) and strain ( _�ij) in the multi-axial form are:
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_�ij � 1� m
E

_rij ÿ m
E

_rkkdij � 3

2
Dr�Nÿ1�

eff Sij �41�

with

Sij � rij ÿ 1
3
rkkdij; �42�

reff �
�����������
3
2
SijSij

q
� 1��

2
p

������������������������������������������������������������������������
�rr ÿ rh�2 � �rr ÿ rz�2 � �rz ÿ rh�2

q
; �43�

where D and N are material constants for creep. For convenience, in the following, Srr; Shh and Szz will be
replaced by Sr; Sh and Sz, respectively.

The rates of strains and displacement satisfy

_�r � d _u
dr
; _�h � _u

r
; �44�

and the equilibrium equation of the stress rates is

d _rr

dr
� _rr ÿ _rh

r
� 0: �45�

For the case of _�z � 0, the relations between stress rates and strain rates are

_rr � E�1ÿ m�
�1ÿ 2m��1� m� _�r

�
� m

1ÿ m
_�h ÿ 3

2
Dr�Nÿ1�

eff S0r
h
� m

1ÿ m
S0h
i�
; �46�

_rh � E�1ÿ m�
�1ÿ 2m��1� m� _�h

�
� m

1ÿ m
_�r ÿ 3

2
Dr�Nÿ1�

eff S0h
h
� m

1ÿ m
S0r
i�
; �47�

_rz � m� _rr � _rh� ÿ 3
2
Dr�Nÿ1�

eff ESz: �48�
For the case of _�z being a constant at each time, denoted as _d, there is

_rr � E�1ÿ m�
�1ÿ 2m��1� m� _�r

�
� m

1ÿ m
_�h ÿ 3

2
Dr�Nÿ1�

eff S0r
h
� m

1ÿ m
S0h
i
� m

1ÿ m
_d
�
; �49�

_rh � E�1ÿ m�
�1ÿ 2m��1� m� _�h

�
� m

1ÿ m
_�r ÿ 3

2
Dr�Nÿ1�

eff S0h
h
� m

1ÿ m
S0r
i
� m

1ÿ m
_d
�
: �50�

_rz � E _d ÿ 3
2
Dr�Nÿ1�

eff ESz � m� _rr � _rh�; �51�
with

S0r � Sr � mSz; S0h � Sh � mSz: �52�
It should be noted that in FGM all quantities E, m, D and N are functions of the coordinate r.

3.1. The case of _�z being zero

For the case of _�z � 0, insertion of Eq. (44) into Eqs. (46) and (47) and then into Eq. (45) gives the
di�erential equation for _u in FGM
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d2 _u
dr2
� d _u

dr
1

r

�
� d�ln �E��

dr

�
� _u

r
m0

d�ln �E��
dr

�
ÿ 1

r

�
� d�ln �E��

dr
3

2
Dr�Nÿ1�

eff �S0r � m0S0h�

� d

dr
3

2
Dr�Nÿ1�

eff �S0r
�

� m0S0h�
�
� 3

2
Dr�Nÿ1�

eff �1ÿ m0� S
0
r ÿ S0h

r
: �53�

When _u is known, the stress rates can be calculated from Eqs. (46)±(48). Therefore, we focus on ®nding the
analytical solution of Eq. (53) for FGM. From Eq. (53), it can be seen that the solution of _u strongly
depends on the transition functions of E, m, D and N . As an example, the transition functions of E and aT
given in Eq. (10) are used, whereas the case of m, D and N being constant is studied in this article. The
procedure given below for solving the problem is also valid for other transition functions for E and aT , and
for D and N being functions of the coordinate r. Of course, the solution is more complicated.

In general, the quantities reff ; S0r and S0h are very complicated functions of the coordinate r, even in an
implicit function form. Therefore, it is almost impossible to ®nd an exact analytical solution of Eq. (53),
even for simple transition functions as given in Eq. (10). However, we can ®nd an asymptotical solution of
Eq. (53). At ®rst, we assume that reff ; S0r and S0h are constant, i.e. they are independent of the coordinate r.
Then, the solution of Eq. (53) for FGM is

_u�r� � D1rx1 � D2rx2 � r
3
2
Dr�Nÿ1�

eff S0r�1� nÿ m0� � S0h�m0�n� 1� ÿ 1�� 	
n�1� m0� ; �54�

where the unknown constants D1 and D2 in each material can be determined from the boundary conditions
and the continuity requirements at the interface.

The corresponding stress rates are

_rr�r� � �1ÿ m�Arn

�1ÿ 2m��1� m� D1r�x1ÿ1��m0
�

� x1� � D2r�x2ÿ1��m0 � x2� � 1ÿ m0

n
3

2
Dr�Nÿ1�

eff �S0r ÿ S0h�
�
; �55�

_rh�r� � �1ÿ m�Arn

�1ÿ 2m��1� m� D1r�x1ÿ1��1
�

� m0x1� � D2r�x2ÿ1��1� m0x2�

� 3

2
Dr�Nÿ1�

eff �S0r ÿ S0h��1ÿ m0� 1� n
n

�
: �56�

For a homogeneous material, i.e. n�m� 0, the solutions are (for details see Yang (1998b))

_u � D1r � D2

r
� 1

2
� 3

2
Dr�Nÿ1�

eff S0r
��
� m

1ÿ m
S0h
�

r
�
ÿ R2

i

r

�
� 1ÿ 2m

1ÿ m
�S0r ÿ S0h� r ln �r�

�
ÿ r

2
ÿ R2

i

r
ln �Ri� � R2

i

2r

��
: �57�

_rr � 1

2
� 3

2
Dr�Nÿ1�

eff

E
1ÿ m2

S0r ln �r�
��

� 1

2

R2
i

r2
� �1ÿ 2m�R

2
i

r2
ln �Ri� ÿ 1

2

�
� S0h

�
ÿ ln �r� � 1

2

R2
i

r2
ÿ �1ÿ 2m�R

2
i

r2
ln �Ri� ÿ 1

2

��
� E
�1ÿ 2m��1� m� D1

�
ÿ D2

r2
�1ÿ 2m�

�
; �58�

_rh � 1

2
� 3

2
Dr�Nÿ1�

eff

E
1ÿ m2

S0r ln �r�
��

ÿ 1

2

R2
i

r2
ÿ �1ÿ 2m�R

2
i

r2
ln �Ri� � 1

2

�
� S0h

�
ÿ ln �r� ÿ 1

2

R2
i

r2
� �1ÿ 2m�R

2
i

r2
ln �Ri� ÿ 3

2

��
� E
�1ÿ 2m��1� m� D1

�
� D2

r2
�1ÿ 2m�

�
; �59�
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_rz � m
3

2
Dr�Nÿ1�

eff

E
1ÿ m2

�S0r
��
ÿ S0h� ln �r� ÿ S0h

�� 2E
�1ÿ 2m��1� m�D1

�
ÿ 3

2
Dr�Nÿ1�

eff ESz; �60�

where Ri is the inner radius of the creep layer.
When the stress rate is known, the calculation of stresses at any time ti should be performed iteratively,

r�i�ij �r; ti� � r�iÿ1�
ij �r; tiÿ1� � _r�i�ij �r; ti�dt�i�; �61�

where

ti �
Xi

k�0

dt�k�: �62�

The solution of ti � 0 corresponds to that for elastic material behavior. To calculate _r�i�ij �r; ti�, the stresses at
the time tiÿ1 used.

This solution can be used for the following cases: (a) the gradient in FGM is not strong and (b) the
thickness of the graded layer is not large. To obtain a generally useful solution, a higher order approxi-
mation of reff ; S0r and S0h should be made. Because reff ; S0r; S0h are complex functions of the coordinate r,
Taylor's developments of the functions

reff�r� � reff��r� �
d
dr �reff�r��jr��r

1!
�r ÿ �r� �

d2

dr2 �reff�r��jr��r

2!
�r ÿ �r�2 �

d3

dr3 �reff�r��jr��r

3!
�r ÿ �r�3 � � � � ; �63�

S 0r�r� � S0r��r� �
d
dr �S0r�r��jr��r

1!
�r ÿ �r� �

d2

dr2 �S0r�r��jr��r

2!
�r ÿ �r�2 �

d3

dr3 �S0r�r��jr��r

3!
�r ÿ �r�3 � � � � ; �64�

S 0h�r� � S0h��r� �
d
dr �S0h�r��jr��r

1!
�r ÿ �r� �

d2

dr2 �S0h�r��jr��r

2!
�r ÿ �r�2 �

d3

dr3 �S0h�r��jr��r

3!
�r ÿ �r�3 � � � � �65�

have to be used, where �r is one given point in the creep layer, e.g. the center point of the creep layer.
Then, the solution of _u�r� has the following form:

_u�r� � D1rx1 � D2rx2 � r
3
2
Dr�Nÿ1�

eff S0r�1� nÿ m0� � S0h�m0�n� 1� ÿ 1�� 	
n�1� m0�

� U1r � U2r2 � U3r3 � � � � ; �66�
where the coe�cients U1;U2;U3; :::; are known and dependent on the values of dp=drp�reff�r��jr��r,
dp=drp�S0r�r��jr��r, dp=drp�S0h�r��jr��r, p� 0,1,2,3, . . . The question of how many higher order terms should be
used for the stress analysis is dependent on the gradient of the material properties in FGM. In Section 4,
three examples will be given to show that the asymptotic solution is useful for the stress analysis in FGM,
taking the material creep behavior into account.

3.2. The case of _�z being constant

For the case of _�z � _d, where _d may be a function of the time, the di�erential equation for _u is

d2 _u
dr2
� d _u

dr
1

r

�
� d�ln �E��

dr

�
� _u

r
m0

d�ln �E��
dr

�
ÿ 1

r

�
� d�ln �E��

dr
3

2
Dr�Nÿ1�

eff �S0r � m0S0h�

� d

dr
3

2
Dr�Nÿ1�

eff �S0r
�

� m0S0h�
�
� 3

2
Dr�Nÿ1�

eff �1ÿ m0� S
0
r ÿ S0h

r
ÿ m0 _d

d�ln �E��
dr

: �67�
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In Eq. (67), only the term ÿm0 _d�d�ln �E��=dr� is di�erent from Eq. (53), which e�ects only on the special
solution of _u�r�. The solution of _u�r� with the assumption of reff ; S0r; S0h being constant for FGM reads

_u�r� � D1drx1 � D2drx2 � r
3
2
Dr�Nÿ1�

eff S0r�1� nÿ m0� � S0h�m0�n� 1� ÿ 1�� 	
n�1� m0� ÿ rm _d: �68�

The corresponding stresses are

_rr�r� � �1ÿ m�Arn

�1ÿ 2m��1� m� D1dr�x1ÿ1��m0
�

� x1� � D2dr�x2ÿ1��m0 � x2�

� 1ÿ m0

n
3

2
Dr�Nÿ1�

eff �S0r ÿ S0h�
�
; �69�

_rh�r� � �1ÿ m�Arn

�1ÿ 2m��1� m� D1dr�x1ÿ1��1
�

� m0x1� � D2dr�x2ÿ1��1� m0x2�

� 3

2
Dr�Nÿ1�

eff �S0r ÿ S0h��1ÿ m0� 1� n
n

�
; �70�

_rz�r� � Arn _dÿ 3
2
Dr�Nÿ1�

eff ArnSz � m� _rr�r� � _rh�r��: �71�
For homogeneous material, the solution of _u�r� is the same as that for the case of _�z � 0 given in Eq. (57) (it
should be noted that the values of D1 and D2 are di�erent). The stresses are

_rr � 1

2
� 3

2
Dr�Nÿ1�

eff

E
1ÿ m2

S0r ln �r�
��

� 1

2

R2
i

r2
� �1ÿ 2m�R

2
i

r2
ln �Ri� ÿ 1

2

�
� S0h

�
ÿ ln �r� � 1

2

R2
i

r2
ÿ �1ÿ 2m�R

2
i

r2
ln �Ri� ÿ 1

2

��
� E
�1ÿ 2m��1� m� D1

�
ÿ D2

r2
�1ÿ 2m�

�
� Em _d
�1ÿ 2m��1� m� ; �72�

_rh � 1

2
� 3

2
Dr�Nÿ1�

eff

E
1ÿ m2

S0r ln �r�
��

ÿ 1

2

R2
i

r2
ÿ �1ÿ 2m�R

2
i

r2
ln �Ri� � 1

2

�
� S0h

�
ÿ ln �r� ÿ 1

2

R2
i

r2
� �1ÿ 2m�R

2
i

r2
ln �Ri� ÿ 3

2

��
� E
�1ÿ 2m��1� m� D1

�
� D2

r2
�1ÿ 2m�

�
� Em _d
�1ÿ 2m��1� m� ; �73�

_rz � E _dÿ 3
2
Dr�Nÿ1�

eff ESz � m� _rr � _rh�: �74�
Eq. (67) di�ers from Eq. (53) only due to the term ÿm0 _d�d�ln�E��=dr�, which is a well known explicit
function of r for a given E�E(r). Therefore, the method to obtain the higher order asymptotic solution of
_u�r� is the same as that presented in Section 3.1.

For the stress analysis in a cylinder with FGM under thermal loading and rz � 0 at the ends, a similar
procedure to that in Section 2.3 can be performed to determine the stress rates. The stress rates can be
calculated from

_rij�r� � _r0
ij�r� � _rd

ij�r�; �75�
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where _r0
ij is determined from the equations given in Section 3.1 and _rd

ij from the equations given in Section
3.2. To determine the value of _d, the condition of

2p
Z Ra

Ri

_rz�r�r dr � 0 �76�

is used. This solution can be used to calculate the stresses in the range far away from the ends of a cylinder
with FGM.

4. Numerical results and discussion

In this section, three examples with di�erent gradients in FGM will be presented to show that the de-
scribed asymptotical solution is useful for the stress analysis in FGM with creep behavior. In all examples,
the geometry, material data, transition function in FGM and the loading are ®ctive.

A two layer cylinder is considered, in which the inner layer is a homogeneous material with elastic
behavior and the outer layer is an FGM with creep material behavior. The radii of the cylinder are
R0 � 20 mm; R1 � 41 mm; R2 � 43:55 mm. The data of material 1 are

E1 � 215 GPa; m1 � 0:3; a1 � 16:28� 10ÿ6 Kÿ1; �77�
and of material 2

E2 � Arn GPa; m2 � 0:3; a2T � Brm; �78�

D � 1:4� 10ÿ8; N � 2:25; �79�
where for D, the stresses should be given in MPa and the time in hours. The thermal loading is as follows:
the initial temperature is 0�C, at which the stresses are free, and then t hours of creeping at 980�C. For all
examples, there is

A � E1=Rn
1; B � a1T=Rm

1 : �80�
For example 1, n � ÿ15 and m� 8, such that at the outer surface (r � R2) E2 � 87GPa;

a2 � 26:38� 10ÿ6 Kÿ1 (gradient in FGM is stronger with x1 � 15:48 and x2 � ÿ0:4799).
For example 2, n� 2 and m� 3, and at r � R2 there is E2 � 242:6GPa; a2 � 19:51� 10ÿ6 Kÿ1 (gradient

in FGM is weaker with x1 � 0:6904 and x2 � ÿ2:069).
For example 3, n� 15 and m�ÿ8 and at r � R2 there is E2 � 531:5GPa; a2 � 10:05� 10ÿ6 Kÿ1 (gra-

dient in FGM is stronger with x1 � ÿ0:3711 and x2 � ÿ14:63).
The results presented below are the stresses in the range far away from the ends of a cylinder with FGM,

and rz being zero at the ends.
For comparison, the stresses calculated from the asymptotical solution with di�erent higher order ap-

proximation and from the ®nite element method (FEM) are shown in the ®gures. The FE calculations are
performed by using the program ABAQUSABAQUS (ABAQUSABAQUS, 1994). In FE calculations, for di�erent transition
function in FGM the convergence speed of the solution is di�erent. Therefore, for the same used CPU time,
the obtained results correspond to di�erent creeping times and the creeping times have no real meaning.

For example 1, the stress distributions after 5 h of creeping are plotted in Fig. 2(a)±(c) for the stress
components rr, rh and rz, respectively. It can be seen that for this transition functions (n � ÿ15 and m� 8),
the second-order asymptotic solution is su�cient for the calculation of the stresses.

For example 2, the stress distributions after 4.94 h of creeping are plotted in Fig. 3(a)±(c) for the stress
components rr, rh and rz, respectively. It is obvious that for this transition functions (n� 2 and m� 3), the
®rst-order asymptotic solution can be used approximately for the calculation of the stresses, but with a
higher order solution the agreement of the stresses from the asymptotic solution and FEM is better.
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Fig. 2. Comparison of the stresses calculated from the asymptotic solution and FEM for example 1 (5 h of creeping, n � ÿ15 and

m� 8).

Fig. 3. Comparison of the stresses calculated from the asymptotic solution and FEM for example 2 (4.94 h of creeping, n� 2 and

m� 3).
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Fig. 4. Comparison of the stresses calculated from the asymptotic solution and FEM for example 3 and for long time creeping (2.22 h

of creeping, n� 15 and m � ÿ8).

Fig. 5. Comparison of the stresses calculated from the asymptotic solution and FEM for example 3 and for short time creeping (0.0309

h of creeping, n� 15 and m � ÿ8).
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Fig. 6. Time-dependent stresses at the point in elastic material for all the three examples.

Fig. 7. Time-dependent stresses at the point in creep material for all the three examples.
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For example 3, the stress distributions after 2.22 h of creeping are plotted in Fig. 4(a)±(c) for the stress
components rr, rh and rz, respectively. It can be seen that for this transition functions (n� 15 and m � ÿ8),
the ®rst- and second-order asymptotic solution cannot be used for the calculation of the stresses (see Fig.
4 b), only the results from the third or higher order asymptotic solution agree well with those of FEM.
However, for a short time creeping, the ®rst order asymptotic solution can be used to calculate the stresses
approximately. Fig. 5(a)±(c) show the stress distribution after 0.0309 h of creeping for example 3.

A lot of FEM calculations have shown that the ®fth-order asymptotic solution can be used well to
calculate the stresses for a long time creeping.

Using the ®fth-order asymptotic solution, we can study the stress' time dependence. The time-dependent
stresses at given points for the three examples is plotted in Fig. 6 for the point r� 38.9 mm (in material 1)
and in Fig. 7 for the point r� 42.35 mm (in material 2). It can be seen that after 10 h of creeping, all stresses
are reduced to almost zero. It should be noted that this is only true in a two layer joint with creep material
behavior. For a three or more layer joint with creep material behavior, the stresses are not reduced to zero,
but to a constant (Yang, 1998b).

5. Conclusions

In a cylindrical joint, the analytical solutions to calculate thermal stresses in FGM are found for the
material with elastic and creep behavior. For the elastic material behavior, the solution is exact. For the
material with creep, the solution is asymptotic. A lot of FEM calculations have shown that the ®fth-order
asymptotic solution can be used to calculate the stresses for a long time creeping. However, for a short time
creeping, the ®rst order asymptotic solution is enough to calculate the stresses approximately.

This analytical solution can be used easily to study the dependence of the stresses on time, temperature
and the transition functions of the material in FGM. The solution can also be used for the stress distri-
bution optimization in a joint with FGM taking the creep behavior into account.
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